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1. Introduction 
 

Concrete-filled steel tubes (CFT) are a special structural 

element in that each material compensates for the 

weaknesses of other elements. Microcracks in concrete that 

occur under compression are laterally restrained by the steel 

tube, and this leads to higher stiffness and strength. The 

steel tube is restrained with regard to inward deformation 

due to the concrete, which delays local buckling in the tube. 

However, considering that the Poisson’s ratio of concrete is 

smaller than that of steel in the linear elastic stress range, 

interaction between concrete and the tube cannot be 

expected under a service load condition. That is, there is no 

confinement of the concrete in low-stress level (Schneider 

1998). Once microcracks occur at some compressive stress 

level, the stress-strain curve starts to show nonlinear 

behavior. Therefore, when concrete subjected to 

compressive loading is laterally confined or compressed, 

the occurrence of microcracks and growth will be delayed, 

thus extending the linear range of the stress-strain curve and 

enhancing the ultimate strength. This phenomenon is known 

as the confinement effect of concrete. In a CFT, when the 

Poisson’s ratio of concrete exceeds that of the steel, 

interaction between the concrete and steel tube can be 

observed, and hoop stress in the reaction to the lateral 

expansion of concrete will confine the concrete.  
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Numerous studies have been conducted on the ultimate 

strength of concrete considering the confinement effect. In 

addition, CFT assessments considering the confinement 

effect based on experimental and numerical analyses have 

been done and formulas to predict the strength have been 

proposed (Knowles and Park 1969, Tang et al. 1997, Chen 

et al. 2018, Wang et al. 2019, Hasan et al. 2019, Wei et al. 

2020, Fan et al. 2021, Luat et al. 2021). 

Knowles and Park (1969) studied the ultimate strength 

of a slender CFT column subjected to axial and eccentric 

loads for a wide range of slenderness ratios. In their study, 

the confinement effect on the concrete was not found in the 

slender columns because buckling occurred before the 

concrete reached the level of inelastic high strain that would 

cause its volume to increase. That is, in their slender 

columns, the effect of the concrete compressive strength is 

negligible and, consequently, the confinement effect is not 

influential. Tang et al. (1997) included a Poisson’s ratios 

correlation between the concrete and steel tube in their 

quantification of the confining pressure acting on the 

concrete. Based on experiments with the variables of the 

concrete compressive strength, steel tube yield strength, and 

D/t of the steel tube, the stress-strain relationship of 

concrete considering confinement was proposed.  

Recently, Chen et al. (2018) conducted an axial load test 

of CFT reinforced with silica fume and steel fiber. They 

found that silica fume and steel fiber did not influence the 

mode of failure but did increase the ultimate compressive 

strength due to the additional confinement by the steel fiber 

and the pozzolanic action of the silica fume. Wang et al. 

(2019) conducted axial load tests of 20 CFT specimens in 
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which the effects of the load conditions, the diameter-

thickness ratio and the compressive strength of reactive 

powder concrete (RPC) were considered. In their results, 

they found that lateral confinement was provided only when 

the strain exceeded the yield limit. Hasan et al. (2019) 

performed axial load tests on 22 CFT specimens to observe 

the failure modes of CFT considering the influence of D/t 

ratio and number of steel rebars. The results show that the 

strengh of CFT increases with increasing number of steel 

reinforcing bars and the local buckling of columns 

decreases when the thickness of steel tube increases. Wei et 

al. (2020) used 107 experimental data instances for an 

analysis of the behavior of high-strength CFTs, among 

which 87 tests were from other studies and 20 tests were 

from an additional test in their to fill the gaps in the existing 

dataset. Using the data, they evaluated the design formulas 

of the ultimate compressive strength of CFTs. Fan et al. 

(2021) quantitatively investigated the compatibility of 

design variables such as the material strength (𝑓𝑐𝑘 , 𝑓𝑦 ), 

diameter, and thickness of the tube in predictions of the 

ultimate axial strength. The concluded that small D/t and 

low 𝑓𝑦-high 𝑓𝑐𝑘 values should be avoided due to the low 

strength enhancement and provided the optimal 

combination of design variables. Luat et al. (2021) 

proposed a hybrid intelligence model, termed G-MARS, 

that incorporated a genetic algorithm and multivariate 

adaptive regression splines for predictions of the ultimate 

axial strength of CFTs. In their study, 504 experimental data 

instances were used for training and verification.  

Despite the many previous studies as outlined above, 

most of them focused on the determination of the ultimate 

compressive strength based the results without considering 

detailed interactions between the materials involved. In 

addition, the previously proposed strength estimation 

equations of CFT can not quantitatively consider the 

confinement effect of steel tube because they do not 

consider the difference in the confinement force of steel 

tube according to the stress level due to the nonlinear 

Poisson ratio effect of concrete. However, in order to extend 

the use of efficient CFTs to various structural applications, 

understanding these detailed interactions is required, and an 

analytical procedure must be established to trace the 

interactive behavior of CFTs while they are gradually 

subjected to ultimate axial loading levels. In this study, an 

analytical procedure that directly formulates the interaction 

between the concrete and the steel tube by considering the 

nonlinear Poisson effect and the nonlinear stress-strain 

curve of the concrete, including the confinement effect, is 

proposed. Here, only short and compact cross-sections were 

considered to ignore the effects of local buckling and 

quantitatively estimate the effect of improving the strength 

of concrete due to the confinement force of steel tube. The 

failure stress from a biaxial interaction diagram of concrete 

and the von-Mises failure yield criterion were used to 

consider the multi-dimensional stresses acting on the 

concrete and steel tube, respectively. In order to verify the 

prediction capabilities of the proposed analytical procedure, 

99 circular CFT experimental data instances from other 

studies were used for a comparison with AISC (2016), 

Eurocode 4 (2004), and prediction methods devised by  

Table 1 Design criteria for the width-to-thickness ratio 

for the steel tube of a CFT 

 Circular steel tube 

 

𝜆𝑝 

(compact/ 

Noncompact) 

𝜆𝑟 

(Noncompact/Sle

nder) 

𝜆𝑚𝑎𝑥 

(Maximum 

permit) 

AISC 

(2016) 

0.15𝐸

𝑓𝑦
 

0.19𝐸

𝑓𝑦
 

0.31𝐸

𝑓𝑦
 

EC4 

(2004) 
  90

235

𝑓𝑦
 

ACI 

(2019) 
  √

8𝐸

𝑓𝑦
 

 

 

Fig. 1 Compressive strength according to the section type 

 

 

other researchers. 

 

 
2. Prediction formulas for the ultimate compressive 
strength of CFTs 

 

2.1 AISC 

 

AISC (2016) applies a different criteria for the width-to-

thickness ratio according to the section shape of the CFT. 

AISC (2016) has three width-to-thickness ratio categories: 

(1) compact, (2) non-compact, and (3) slender, as shown in 

Table 1 and Fig. 1. The different D/t criteria of each design 

formula exist because each design formula uses a different 

method to consider the strength reduction for local buckling 

in the steel tube. AISC (2016) defines two strength formulas 

for compact and slender sections and applies interpolation 

for non-compact sections, as shown in Fig. 1. The 

compressive axial strength (𝑃𝑝) of the CFT by AISC (2016) 

is determined by Eq. (1). In the formula, the confinement 

effect is considered to be constant regardless of D/t or 𝑓𝑦 

because the coefficient of 𝑓𝑐𝑘
  is a constant, 0.95 for a 

compact section. Therefore, this formula may underestimate 

the ultimate axial strength of CFTs for sections that are 

highly influenced by the confinement effect.  

𝑃𝑝 = 𝑓𝑦𝐴𝑆 + 𝐶2𝑓𝑐𝑘
 (𝐴𝑐 + 𝐴𝑠𝑟

𝐸𝑠

𝐸𝑐

) (1) 

Here, 𝑓𝑦 is the yield strength of the steel tube, 𝐴𝑆 is 

the cross-sectional area of the steel tube, 𝑓𝑐𝑘  is the 

compressive strength of the concrete, 𝐴𝑐 is the net area of  
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the concrete, 𝐴𝑠𝑟  is the area of the rebar, 𝐸𝑠  is the 

modulus of elasticity of the steel, 𝐸𝑐 is the modulus of 

elasticity of the concrete, and 𝐶2  is the confinement 

coefficient (0.95) for a round section. 

 

2.2 Eurocode 4 
 

The compressive axial strength (𝑁𝑝𝑙,𝑅𝑑) of a CFT by 

EC4 (2004) is determined by Eq. (2). In the formula, the 

concrete strength magnification coefficient is given as a 

function of the influential factors of D, t, 𝑓𝑐𝑘
 , and 𝑓𝑦

 , and 

the coefficient is larger than 1.0. That is, once the criteria of 

the width-to-thickness ratio are met, the concrete is 

regarded as fully confined to develop at least the full 

compressive strength 𝑓𝑐𝑘
 . In contrast to AISC (2016), EC4 

(2004) can effectively consider both the confinement effect 

on the concrete and the strength reduction by local 

buckling.  

𝑁𝑝𝑙,𝑅𝑑 = 𝜂𝑎𝐴𝑠𝑓𝑦 + 𝐴𝑐𝑓𝑐𝑘 (1 + 𝜂𝑐

𝑡

𝐷

𝑓𝑦

𝑓𝑐𝑘

) + 𝐴𝑠𝑟𝑓𝑠𝑟 (2) 

𝜂𝑎 = 0.25(3 + 2𝜆̅) (3) 

𝜂𝑐 = 4.9 − 18.5𝜆̅ + 17𝜆2̅̅̅ (4) 

𝜆̅ = √𝑁𝑝𝑙,𝑅𝑘/𝑁𝑐𝑟 (5) 

𝑁𝑝𝑙,𝑅𝑘 = 𝐴𝑠𝑓𝑦 + 𝐴𝑐𝑓𝑐𝑘 + 𝐴𝑠𝑓𝑦𝑟 (6) 

In these equations, 𝑁𝑐𝑟  is the elastic critical normal 

force for the relevant buckling mode.  

 

2.3 Formulas by previous researchers 
 

Richart et al. (1928) were the first to suggest a strength 

enhancement formula of concrete, presented here as Eq. (7), 

based on a triaxial compression test. The confined strength 

of concrete is increased by 𝑘1𝑓𝑙  from the uniaxial 

compressive strength, where 𝑓𝑙 is the lateral confining  

 

 

pressure and 𝑘1 is the coefficient for lateral confinement. 

Later, Balmer et al. (1949) calibrated the coefficient 𝑘1 as 

5.6 on average based on an extensive experimental study. 

Saatcioglu et al. (1992) modified 𝑘1 to 6.7(𝑓𝑙)
−0.17 and 

Razvi et al. (1999) modified 𝑘1𝑓𝑙 to 6.7(𝑓𝑙)
0.83 based on 

their research.  

𝑓𝑐𝑐 = 𝑓𝑐𝑘 + 𝑘1𝑓𝑙 (7) 

Sun (2008), Liu et al. (2016), and O’Shea and Bridge 

(2000) developed design formulas for the ultimate 

compressive strength of CFTs considering the confinement 

effect, as shown in Table 2. As indicated in the table, Sun 

(2008) defined the strength using a simple multiplication of 

the concrete area by the confined strength of the concrete 

(𝑓𝑐𝑐) but did not include the steel tube strength in the 

formula. Instead, the strength enhancement was defined as a 

function of D/t, 𝑓𝑦, and 𝑓𝑐𝑘 . The formula by Liu et al. 

(2016) separately considered the contributions of the 

concrete and the steel tube. However, the yield strength of 

the steel tube was reduced to 0.61𝑓𝑦, and their concrete 

strength enhancement formula uses a format identical to 

that by Richart et al. (1928) except that the lateral confining 

pressure was defined as a function of D/t and 𝑓𝑦. In the 

formula, the maximum lateral stress was assumed to be 

0.54𝑓𝑦.  The reduction in the steel tube strength was 

determined based on experimental, theoretical and FEA 

results. It can be explained using the von-Mises yield 

criterion of steel subjected to multi-dimensional stresses. 

O’Shea and Bridge (2000) subdivided the concrete strength 

ranges into 𝑓𝑐𝑘 ≤ 50 𝑀𝑃𝑎  and 80 𝑀𝑃𝑎 ≤ 𝑓𝑐𝑘 ≤
100 𝑀𝑃𝑎  in their estimation of the concrete strength 

enhancement. 

 

 

3. Material models 
 

3.1 Stress-strain model of confined concrete 
 
According to Schneider et al. (1998), when the axial 

load is gradually applied to CFT, the confining pressure into 

concrete does not exist in the beginning of the loading  

Table 2 Prediction formulas for the ultimate compressive strength of CFT by various researchers 

Reference Formulas 

Sun (2008) 𝑁𝑢 = 𝑓𝑐𝑐𝐴𝑐, where 𝑓𝑐𝑐 = 𝑓𝑐𝑘(1 + 8.2
(𝐷/𝑡−1)

(𝐷/𝑡−2)2

𝑓𝑦

𝑓𝑐𝑘
) 

Liu et al. (2016) 

𝑁𝑢 = 𝜎𝑣𝐴𝑠 + 𝜎𝑐𝑝𝐴𝑐 

where 𝜎𝑣 = 0.61𝑓𝑦;  𝑓𝑐𝑐 = 𝑓𝑐𝑘 + 4.1𝜎𝑟; 𝜎𝑟 =
2𝑡𝜎ℎ

𝐷−2𝑡
=

1.08𝑡𝑓𝑦

𝐷
;  𝜎ℎ = 0.54𝑓𝑦 

O’Shea and Bridge (2000) 

𝑁𝑢 = 𝑓𝑦𝐴𝑠 + 𝜎𝑐𝑝𝐴𝑐 , where D/t ≤ 200 

for 𝑓𝑐𝑘 ≤ 50 𝑀𝑃𝑎,  𝑓𝑐𝑐 = 𝑓𝑐𝑘 (−1.228 + 2.172√
1+7.46𝑓𝑙

𝑓𝑐𝑘
− 2

𝑓𝑙

𝑓𝑐𝑘
) 

for 80 𝑀𝑃𝑎 ≤ 𝑓𝑐𝑘 ≤ 100 𝑀𝑃𝑎, 
𝑓𝑐𝑐

𝑓𝑐𝑘
= (

𝑓𝑙

𝑓𝑡
+ 1)

𝑘
 

𝑘 = 1.25 [1 + 0.062
𝑓𝑙

𝑓𝑐𝑘
] (𝑓𝑐𝑘)−0.21;   𝑓𝑡 = 0.558√𝑓𝑐𝑘 
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Fig. 2 Mander’s confined concrete stress-strain curve 

 

 

because the Poisson's ratio of concrete is smaller than that 

of steel. Under linear elastic strain range, the Poisson’s 

ratios of concrete and steel are approximately 0.2 and 0.3, 

respectively. As the strain of concrete increases, number of 

micro cracks increase and crack width is widened, 

consequently, apparent volume increases. That is, the 

apparent Poisson’s ratio of concrete can exceed the steel’s 

ratio when the axial strain reaches near the peak point of 

stress-strain curve. Therefore, the concrete in CFT under 

uniaxial compression load will be subjected to triaxial 

stresses at the high nonlinear strain. 

This paper is to predict the ultimate strength of a 

circular CFT, stress-strain model of concrete under 

compression considering confinement effect is required. In 

this paper, the stress-strain relationship of Eq. (8), as shown 

in Fig. 2 proposed by Mander et al. (1988a, 1988b), which 

considers the confinement effect by lateral reinforcement 

based on the Popovic’s (1973) formula, was chosen for an 

analysis of the CFT section. In the formula, the concrete 

strength enhancement (𝑓𝑐𝑐) is expressed as a function of 

𝑓𝑐 and 𝜎𝑟𝑐; at the same time, the peak strain of confined 

concrete was increased based on Eq. (10). 

𝜎𝑐 =
𝑓𝑐𝑐𝑥𝑟

𝑟 − 1 + 𝑥𝑟
 (8) 

𝑓𝑐𝑐 = 𝑓𝑐 (−1.254 + 2.254√1 +
7.94𝜎𝑟𝑐

𝑓𝑐

−
2𝜎𝑟𝑐

𝑓𝑐

) (9) 

𝜀𝑐𝑐 = 0.002 (1 + 5 (
𝑓𝑐𝑐

𝑓𝑐

− 1)) (10) 

 

3.2 Failure criteria of concrete 
 

In this paper, the failure criterion by Drucker and Prager 

(1952) based on a pressure-dependent model was used to 

judge the critical state of concrete under multi-axial 

pressure. The criterion has the form of Eq. (11), where 

𝐼1 and   𝐽2  are correspondingly the first and second 

invariants of the Cauchy stress tensor, respectively 

expressed as Eqs. (12)-(13) for the concrete of the CFT. 

Here, 𝜎0, 𝛼, and  𝛽 are concrete material properties that 

were determined experimentally (Chen 1982). In equation 

(12), 𝜎11  is the longitudinal stress, 𝜎22 and 𝜎33  are  

 

Fig. 3 Strength of concrete under biaxial stress 

 

 

identically acting confining stresses and are denoted here as 

𝜎𝑟𝑐. 

𝑓(𝐼1, 𝐽2) = [𝛼𝐼1 + 3𝛽𝐽2]1/2  =  𝜎0 (11) 

𝐼1 =  𝜎11  +   𝜎22  +  𝜎33  =  𝜎11  +  2𝜎𝑟𝑐 (12) 

𝐽2  =  
1

3
(𝜎11 − 𝜎𝑟𝑐 )2 (13) 

During a uniaxial test, the concrete reaches the failure 

criterion when the maximum principal stress, 𝜎11, matches 

the uniaxial compressive strength of the concrete, 𝑓𝑐 , 

becoming 𝜎0 . Therefore, the simplified relationship 

between 𝛼 and 𝛽 can be expressed as Eq. (15). Under a 

biaxial test where 𝜎11 is equal to the confining pressure, 

𝜎𝑟𝑐, the maximum failure stress is approximately 1.16𝑓𝑐, as 

shown in Fig. 3, according to Kupfer et al. (1969). Thus, the 

additional relationship between 𝛼 and 𝛽 can be expressed 

as Eq. (17). By solving Eqs. (15)-(17) simultaneously, 𝛼 

and 𝛽  can be determined as −0.355𝑓𝑐  and 1.355 , 

respectively. Finally, equation (11) can be substituted by Eq. 

(18).  

𝑓(𝐼1, 𝐽2) = [𝛼𝑓𝑐 + 𝛽𝑓𝑐
2]1/2  = 𝑓𝑐 (14) 

𝛼 = 𝑓𝑐  −  𝛽𝑓𝑐
 
 (15) 

𝑓(𝐼1 , 𝐽2) = [𝛼(𝜎11 + 𝜎𝑟𝑐) + 𝛽𝜎11
2 ]1/2 = 𝜎0 = 𝑓𝑐 (16) 

𝜎0  = [2.32𝛼𝑓𝑐 + 1.162𝛽𝑓𝑐
2]1/2  = 𝑓𝑐 (17) 

𝑓(𝐼1, 𝐽2) = [𝛼(𝜎11 + 2𝜎𝑟𝑐) + 𝛽(𝜎11 − 𝜎𝑟𝑐)2]1/2 = 𝜎0  

 𝛼 =  −0.355𝑓𝑐;    𝛽 = 1.355 
(18) 

 

3.3 Material model of steel tube and failure criterion 
 

As the Poisson’s ratio of concrete exceeds that of steel 

under high compressive stress, the concrete in the steel tube 

of a CFT begins to interact with the steel tube, pushing it 

outward. This results in hoop stress (𝜎𝜃) in the steel tube. 

That is, the steel tube is subjected to multiaxial stresses. In 

contrast to the uniaxial yielding that occurs when the  
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Fig. 4 Stress state of the steel tube 

 

 

uniaxial stress (𝜎1𝑠) reaches the yield stress of material, 

the steel tube as a ductile material begins to yield or lose 

elasticity when the equivalent von-Mises stress reaches the 

yield stress of the material (Chakrabarty 2006). Therefore, 

the steel tube can yield under stress lower than the yield 

stress of the material. This was also explained in studies by 

Furlong (1967) and Liu et al. (2016).  

Considering that the stress in the thickness direction of the 

steel tube subjected to internal pressure is much lower than 

the hoop stress and considering that there is no shear in the 

tube, the tube can be assumed to be under principal plane 

stress, as indicated in Fig. 4 (He et al. 2019). This study 

also assumed principal plane stress of the steel tube and 

used the yield criterion of Eq. (19). Steel typically shows 

hardening behavior after yielding, but the behavior is highly 

dependent on the type and strength of the steel. (Hasan et 

al. 2019) Thus, a bilinear and perfect elasto-plastic model 

for steel is assumed in this paper. 

𝜎1𝑠
2 − 𝜎1𝑠𝜎𝜃 + 𝜎𝜃

2 ≤ 𝑓𝑦
2 (19) 

 

3.4 Nonlinear poisson's ratio of concrete  
 
Kupfer et al. (1969) proved that the Poisson's ratio of 

concrete is proportional to the concrete strain to some 

extent based on test results. Farooq et al. (2018) presented 

test results that showed that the Poisson’s ratio of concrete 

can exceed 0.5 near the peak strain of the stress-strain curve 

and converge to approximately 0.4 as the axial strain 

increases after the peak point. Madas et al. (1992) 

suggested the relationship between the concrete axial strain 

and the Poisson’s ratio of Eq. (20) and Fig. 5 based on a 

least squares fit using data from Kupfer et al. (1969). Eq. 

(20) gives a result that exceeds 0.5, but for a simple 

application, the maximum value was assumed to be 0.5 

regardless of the strain. If the initial Poisson's ratio (𝑣𝑐𝑜) is 

assumed to be 0.2, the strain for 𝑣𝑐 = 0.3  when the 

Poisson's ratio of concrete equals that of steel is 

approximately 0.001. Therefore, concrete may begin to be 

confined from 𝜀𝑐 = 0.001. In another sense, the steel tube 

may begin to confine the concrete before the tube reaches 

the yielding point. 

𝑣𝑐 = 𝑣𝑐𝑜 (1 + 1.3763
𝜀𝑐

𝜀𝑐𝑐
− 5.36 (

𝜀𝑐

𝜀𝑐𝑐
)

2

+ 8.586 (
𝜀𝑐

𝜀𝑐𝑐
)

3

) (20) 

 

Fig. 5 Poisson’s ratio and strain curve 

 

 

4. Proposed procedure for calculating the maximum 
compressive strength of a CFT 

 

As shown in Eqs. (1)-(2), the prediction formulas of 

AISC (2016) and Eurocode 4 (2004) do not directly 

consider the interaction between the concrete and steel tube. 

In addition, the formulas can only be applied for specified 

ranges of design variables such as the concrete compressive 

strength and yield strength of steel. In this study, the stress-

strain relationships of the concrete and steel tube and the 

Poisson’s ratio-strain relationship of the concrete are 

directly used and constitutive equations are constructed 

based on the force equilibrium and strain compatibility. 

Therefore, an accurate estimation of the compressive 

strength of a CFT can be achieved for wider ranges of the 

concrete compressive strength and yield strength of steel. 

Nevertheless, for simplicity, the following assumptions are 

adopted.  

1) The cross-section of the CFT is subjected to 

uniform axial strain without eccentricity.  

2) The concrete and the steel tube behave 

monolithically without any gap between the two 

materials.  

3) The compressive strength of the CFT is reached 

when the von-Mises stress of the steel tube and 

the combined stress of the concrete reach the 

yield stress of the steel and/or the failure stress of 

the biaxial interaction diagram of the concrete, 

respectively.  

 

4.1. Construction of an equilibrium equation  
  
When the Poisson’s ratios of the concrete and steel tube 

become equal, the interaction begins. Assuming that the 

coordinate axes of the radial and circumferential directions 

are correspondingly 𝑟  and 𝜃 , the compression on the 

concrete, (𝐷 − 2𝑡)𝜎𝑟𝑐, is equilibrated by the tension on the 

steel tube, 2𝑡𝜎𝜃, as shown in Fig. 6. Here, 𝜎𝑟𝑐  and 𝜎𝜃 

denote the confinement stress in the concrete and the hoop 

stress in the tube, respectively.  

Deformations and stresses in the concrete and steel 

tubes of CFTs can be determined based on the superposition 

method, as shown in Fig. 6. If monolithic behavior of the 

concrete and the tube is assumed, the deformation of 

concrete in the radial direction, 𝑢1𝑐 + 𝑢2𝑐 , should be  
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Fig. 6 Confined stress in a concrete-filled steel tube 

 

 

identical to the deformation of the steel tube, 𝑢1𝑠 + 𝑢2𝑠. 

𝑢1𝑐 and 𝑢1𝑠 are correspondingly the radial strains in the 

concrete and the steel tube due to the Poisson’s ratios under 

uniaxial compression and are expressed respectively as Eqs. 

(22)-(23). In addition, 𝑢2𝑐 and 𝑢2𝑠 are likewise the radial 

strains in the concrete and steel tube due to confining 

pressure and are expressed as Eqs. (24)-(25) based on 

elasticity theory (Sadd 2004, Yu et al. 2010).  

𝑢1𝑐 = 𝑟𝑜𝑐𝜀𝑟𝑐 = −𝑟𝑜𝑐𝑣𝑐𝜀𝑧 (22) 

𝑢1𝑠 = 𝑟𝑜𝑠𝜀𝑟𝑠 = −𝑟𝑜𝑠𝑣𝑠𝜀𝑧 (23) 

Here, 𝜀𝑧 is the compressive strain in the longitudinal 

direction, and 𝜀𝑟𝑐
  and 𝜀𝑟𝑠

  are the strains in the concrete 

and steel tube in the radial direction, respectively. 𝑣𝑐 and 

𝑣𝑠  are the Poisson’s ratios of the concrete and steel, 

respectively, and 𝑟𝑜𝑐  and 𝑟𝑜𝑠 are likewise the initial radii 

of the concrete and the tube. 

𝑢2𝑐
 = 

𝜎𝑟𝑐
 (𝑣𝑐

2−1)

𝐸𝑐
(1 −

𝑣𝑐

1−𝑣𝐶
) (

𝐷−2𝑡

2
) (24) 

𝑢2𝑠
 =

(𝐷 − 2𝑡) 𝜎𝑟𝑐
 (1 + 𝑣𝑠

 )

8𝐸𝑠𝑡(𝑡 − 𝐷)
[𝐷2 + (1 − 2𝑣𝑠)(𝐷 − 2𝑡)2] (25) 

Finally, the confining pressure on the concrete, 𝜎𝑟𝑐
 , can 

be expressed as a function of 𝐷, 𝑡, 𝑣𝑐 , 𝑣𝑠, 𝜀𝑧, 𝐸𝑐 , and 𝐸𝑠, as 

shown in Eq. (26), by combining equations (22) to (25). 

𝜎𝑟𝑐
 =

−𝜀𝑧(𝑣𝑆 − 𝑣𝑐)

1 + 𝑣𝑠

4𝑡𝐸𝑠(𝐷 − 𝑡)
[𝐷2 + (1 − 2𝑣𝑠)(𝐷 − 2𝑡)2] −

(1 + 𝑣𝑐)(1 − 2𝑣𝑐)
𝐸𝑐

 
(26) 

 
4.2. Proposed procedure 

 

A new procedure (referred to as Kim’s procedure) that 

directly uses the stress-strain relationships of the concrete 

and steel tube and the Poisson’s ratio-strain relationship of 

concrete in order to provide an accurate estimation of the 

circular CFT compressive strength and for wide range of 

design variables is presented as a flowchart in Fig. 7.  

(1) Initialize variables 𝑁𝑖 = 0  (𝑖 = 0) 

(2) The axial strain (𝜀𝑧) of concrete when 𝑣𝑐 = 𝑣𝑠 

is initially computed and the strain is slightly 

increased, 𝜀𝑧 = 𝜀𝑧 + ∆𝜀𝑧. 

(3) The Poisson’s ratio is determined at the axial 

strain using Eq. (20).  

(4) The confining stress on concrete (𝜎𝑟𝑐
 )  is 

calculated by Eq. (26).  

(5) The hoop stress and the axial stress of the steel 

tube are calculated at the given strain, and the 

combined stress of the steel tube is calculated by 

the von-Mises stress equation to assess whether 

the steel reaches the yield criterion. 

(6) If the combined stress of the steel tube is 

yielded, 𝜎1𝑠  and 𝜎𝜃  are determined using the 

𝜎1𝑠
′  and 𝜎𝜃

′  values  respectively when the 

condition of 𝑓2(𝜎1𝑠
′ , 𝜎𝜃

′ ) = 𝑓𝑦 is satisfied.  

(7) If the combined stress of steel tube is 

determined, the confining stress of the concrete 

is limited to 𝜎𝑟𝑐
′  and the confining stress of the 

concrete is determined to be equal to the smaller 

value between 𝜎𝑟𝑐
  and 𝜎𝑟𝑐

′ . 

(8) The maximum confined strength and strain of 

the concrete are respectively calculated by Eq. 

(9) and Eq. (10), and the stress-strain 

relationship of the confined concrete is 

determined using Eq. (8).  

(9) The concrete axial stress, 𝜎𝑐 (or 𝜎11) , is 

computed at the given strain and the combined 

stress of concrete is calculated to check if the 

concrete reaches the failure criterion.  

(10) When the combined stress of the concrete 

reaches the failure criterion or the combined 

stress of the steel reaches the yield criterion, the 

compressive strength of the CFT is calculated 

via 𝑁 = 𝜎1𝑠𝐴𝑠 + 𝜎𝑐𝐴𝑐. 

(11) When the calculated compressive strength of 

CFT(𝑁𝑖) is less than or equal to 𝑁𝑖−1, the loop is 

stopped and the larger value between 𝑁𝑖  and 

𝑁𝑖−1 is determined as the ultimate compressive 

strength of CFT. 

 

 

5. Comparison with experiment results  
 

5.1. Comparison with experimental results 
 

In order to verify the prediction capabilities of Kim’s 

procedure, 99 test data instances were collected from 

studies by Schneider et al. (1998), Kato (1955), Tomii et al. 

(1977), Saisho et al. (1999), Han et al. (2001), Huang et al. 

(2002), Yamamoto et al. (2002), Giakoumelis et al. (2004), 

Sakino and Hayashi (2004a, 2004b), and Li et al. (2005). 

All of the specimens are short and round CFT and have 

compact sections such that the confinement effect is active 

in all cases. The variables of the specimens were the 

compressive strength of the concrete, the yield strength of 

the steel tube, and the diameter and thickness of the tube. 

The data are listed in Table 3. The range of the compressive 

strength of concrete is from 18.1 MPa to 107.3 MPa, and 

the range of the yield strength of the steel tube is from 249 

MPa to 843 MPa. D/t ranges from 17 to 75. Though the 

range of D/t is relatively wide, all values fall in the compact 

section category. The data distributions for each of the 

variables are presented in Fig. 8. 

In Table 3, the predictions by AISC (2016), Eurocode 4 

(2004), Liu et al. (2016) are compared with those by Kim's 

procedure. The average ratios of the test data to the  
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Fig. 7 Kim’s procedure to predict the ultimate compressive strength of circular CFTs 

 

 

Fig. 8 Classification of specimens according to the design variables 
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predictions show that Kim’s procedure predicts the ultimate 

strength more accurately than the other methods. The 

average ratio by Kim’s method is 1.09 with a standard 

deviation of 0.08. AISC (2016) and EC4 (2004) show 

average ratios of 1.16 and 0.88 with standard deviations of 

0.10 and 0.11, respectively. That is, AISC (2016) may  

 

 

underestimate the strength by approximately 16% on 

average, but EC4 (2004) may overestimate the strength by 

nearly 12% on average. Liu et al. (2016) show an average 

ratio of 0.84 with a standard deviation of 0.09. This 

indicates that the model by Liu et al. (2016) can 

overestimate the strength by more than 15% on average. 

Table 3 Experimental data of the concrete-filled steel tube  

Ref. 
D 

(mm) 

t 

(mm) 
D/t 

𝑓𝑦 

(MPa) 

𝑓𝑐𝑘 

(MPa) 

𝑁𝑒𝑥𝑝 

(kN) 

Kims’ 
AISC 

(2016) 

EC4 

(2004) 

Liu et al. 

(2016) 

𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 

Schneider et al. 

(1998) 

C1 141 3 47 285 28.2 881 1.03 1.10 0.83 0.80 

C2 141 6.5 22 313 23.8 1344 0.99 1.05 0.78 0.69 

Kato (1955) 

 

C04LB 300 4.5 67 389 28.3 3930 1.07 1.10 0.76 0.81 

C06LB 300 5.7 53 408 28.3 4630 1.05 1.12 0.75 0.80 

C08LB 300 7.7 39 392 28.3 5020 1.00 1.04 0.68 0.72 

C12LB 300 11.9 25 355 28.3 6030 0.97 1.00 0.64 0.68 

C04MB 300 4.5 67 389 36.3 4640 1.07 1.13 0.81 0.86 

C06MB 300 5.7 53 408 33 5230 1.14 1.18 0.80 0.85 

C08MB 300 7.7 39 392 36.2 5940 1.07 1.11 0.75 0.79 

C12MB 300 11.9 25 355 36.3 7370 1.09 1.12 0.73 0.78 

C06HB 300 5.7 53 408 84.1 8100 1.00 1.03 0.80 0.83 

C08HB 300 7.7 39 392 84.1 8560 0.98 1.00 0.76 0.79 

C04MF 200 4.8 42 447 107.3 4310 0.97 0.95 0.76 0.76 

C06MF 200 6 33 391 107.3 4660 0.98 0.99 0.79 0.79 

C09MF 200 8.4 24 371 107.3 5670 1.10 1.09 0.85 0.84 

C04MU 200 4.8 42 447 75.1 3360 0.96 0.93 0.72 0.72 

C06MU 200 6 33 391 75.1 3820 1.00 1.02 0.78 0.78 

C08MU 200 8.4 24 371 75.1 5050 1.18 1.19 0.89 0.87 

Tomii et al.  

(1977) 

4HN 150 4 38 280 28.7 1118 1.02 1.10 0.82 0.79 

3MN 150 3.2 47 290 22 865 1.01 1.07 0.78 0.76 

4MN 150 4 38 280 22 992 1.01 1.10 0.79 0.76 

2LN 150 2 75 337 18.1 700 1.01 1.13 0.82 0.81 

4LN 150 4 38 280 18.1 1100 1.21 1.31 0.93 0.89 

Saisho et al.  

(1999) 

H-30.1 101.6 2.99 34 377 59.9 921 1.11 1.21 1.01 0.92 

H-30.2 101.6 2.99 34 377 59.9 921 1.11 1.21 1.01 0.92 

H-30.3 101.6 2.96 34 377 59.9 901 1.06 1.19 1.00 0.90 

H-50.1 139.8 2.78 50 341 55 1323 1.06 1.15 0.93 0.91 

H-50.2 139.8 2.78 50 341 55 1391 1.09 1.21 0.98 0.95 

H-50.3 139.8 2.78 50 341 55 1313 1.01 1.14 0.92 0.90 

H-60.1 139.8 2.37 59 463 59.9 1558 1.10 1.21 0.97 0.94 

H-60.2 139.8 2.37 59 463 68 1577 1.03 1.13 0.92 0.89 

H-60.3 139.8 2.37 59 463 68 1577 1.03 1.13 0.92 0.89 

H-60.4 139.8 2.37 59 463 68 1626 1.07 1.16 0.95 0.92 

L-30.1 101.6 2.96 34 377 24.4 676 1.16 1.29 1.05 0.91 

L-30.2 101.6 2.99 34 377 26.6 715 1.19 1.32 1.08 0.93 

L-30.3 101.6 2.99 34 377 28.2 715 1.16 1.30 1.06 0.92 

L-50.1 139.8 2.78 50 341 24.4 931 1.13 1.25 0.93 0.91 
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More detailed analyses of the better performance by Kim’s 

method are presented in the next chapter.  

 

5.2 Performance evaluation of the proposed 
procedure 
 

Fig. 9 presents a comparison of the ultimate strength 

from various prediction models compared to the  

 

 

experimental results. Figs. 9(a)-9(c) show the distribution of 

𝑁𝑒𝑥𝑝 𝑁𝑐𝑎𝑙⁄  according to the compressive strength of 

concrete. Kim’s procedure shows overall good agreement 

with the experimental results in all ranges of the 

compressive strength of concrete. The data distributions 

from the yield strength of the steel tube and D/t are shown 

in Figs. 9(d)-9(f) and in Figs. 9(g)-9(i), respectively. Kim’s 

procedure shows ultimate strength outcomes similar to  

Table 3 Continued 

Ref. 
D 

(mm) 

t 

(mm) 
D/t 

𝑓𝑦 

(MPa) 

𝑓𝑐𝑘 

(MPa) 

𝑁𝑒𝑥𝑝 

(kN) 

Kims’ 
AISC 

(2016) 

EC4 

(2004) 

Liu et al. 

(2016) 

𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 

Han et al. (2001) 

Sp1 159 5 32 390 36.6 2040 1.17 1.21 0.89 0.84 

Sp2 319 7.9 40 358 47.5 7000 1.04 1.08 0.76 0.80 

Sp3 165 2.8 59 363 48.3 1662 1.05 1.10 0.86 0.86 

Sp4 204 6.1 33 389 22.9 2462 1.03 1.09 0.73 0.73 

Sp5 204 6.3 32 405 29.9 2932 1.08 1.13 0.77 0.77 

Sp6 121 3.7 33 295 21.1 695 0.99 1.07 0.81 0.72 

Huang et al.  

(2002) 
CU-040 200 5 40 266 27.2 1694 0.94 1.02 0.72 0.74 

Yamamoto et al. 

(2002) 

C10A-2A-1 101.4 3.02 34 371 22.3 660 1.17 1.30 1.05 0.91 

C10A-2A-2 101.9 3.07 33 371 22.3 649 1.13 1.26 1.02 0.87 

C10A-2A-3 101.8 3.05 33 371 22.3 682 1.15 1.33 1.08 0.92 

C10A-3A-1 101.7 3.04 33 371 38.6 800 1.15 1.29 1.06 0.94 

C10A-3A-2 101.3 3.03 33 371 38.6 742 1.08 1.20 0.99 0.88 

C10A-4A-1 101.9 3.04 34 371 49.2 877 1.13 1.26 1.05 0.94 

C10A-4A-2 101.5 3.05 33 371 49.2 862 1.14 1.25 1.04 0.93 

Giakoumelis et al.

(2004) 

C3 114.4 3.98 29 343 25.1 826 1.06 1.17 0.93 0.83 

C4 114.6 3.99 29 343 78.1 1308 1.02 1.14 0.95 0.89 

C7 114.9 4.91 23 365 27.9 1050 1.08 1.18 0.96 0.85 

C8 115 4.92 23 365 87.7 1787 1.17 1.31 1.10 1.02 

C9 115 5.02 23 365 47.4 1390 1.18 1.31 1.08 0.98 

Sakino and  

Hayashi (2004a) 

L-20-1 178 9 20 283 22.6 2120 0.97 1.11 0.81 0.82 

L-20-2 178 9 20 283 22.6 2060 0.94 1.08 0.79 0.79 

H-20-1 178 9 20 283 46.3 2720 1.02 1.16 0.87 0.89 

H-20-2 178 9 20 283 46.3 2730 1.05 1.16 0.88 0.89 

L-32-1 179 5.5 33 249 22.6 1410 0.98 1.12 0.80 0.82 

L-32-2 179 5.5 33 249 24.4 1560 1.06 1.20 0.86 0.88 

H-32-1 179 5.5 33 249 44.5 2080 1.07 1.21 0.93 0.94 

H-32-2 179 5.5 33 249 44.5 2070 1.06 1.21 0.92 0.94 

L-58-1 174 3 58 266 24.4 1220 1.14 1.28 0.95 0.97 

L-58-2 174 3 58 266 24.4 1220 1.14 1.28 0.95 0.97 

H-58-1 174 3 58 266 46.6 1640 1.04 1.16 0.93 0.94 

H-58-2 174 3 58 266 46.6 1710 1.08 1.21 0.97 0.98 

Sakino and  

Hayashi (2004b) 

CC4A2 149 3 50 308 25.4 941 1.00 1.10 0.81 0.79 

CC6A2 122 4.5 27 576 25.4 1509 1.22 1.17 0.94 0.75 

CC6A41 122 4.5 27 576 40.5 1657 1.18 1.14 0.91 0.75 

CC6A42 122 4.5 27 576 40.5 1663 1.14 1.15 0.91 0.76 

CC6A8 122 4.5 27 576 77 2100 1.12 1.13 0.93 0.80 

CC6C2 239 4.5 53 507 25.4 3035 1.08 1.08 0.72 0.74 
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those in experiment results when 249 MPa ≤ 𝑓𝑦 ≤

525 MPa and 16.6 ≤ 𝐷 𝑡⁄ ≤ 50. 
However, Kim’s procedure tends to underestimate the 

ultimate strength of the CFT compared to the experimental 

results when the yield strength of the steel tube exceeds 525 

MPa or when D/t is greater than 50 (in Figs. 9(f) and 9(i)). 

This difference increases to nearly 20% in high-strength 

specimens, which have ultimate strength levels what exceed 

10000 kN. According to the experimental conditions above, 

the yield strength of the steel tube is high, but the 

confinement effect on the concrete is relatively weak 

because the thickness of the steel tube is relatively thin. 

When predicting the ultimate strength of a CFT, Kim’s 

procedure superimposes the strength calculated from the 

stresses of the two materials at the moment of concrete 

failure or steel tube yield. Because the strength of concrete 

is much lower than that of the steel tube in the above 

conditions, the strength of concrete is the governing factor 

when calculating the ultimate strength according to the 

algorithm. In other words, in the case of a specimen with a  

 

 

yield strength of 525 MPa or more, (a specimen with 

considerably higher yield strength compared to the 

compressive strength of concrete), the steel tube reaches the 

yield strength long after the concrete has reached its failure. 

In these cases, it can be considered that the steel tube can 

actually take more of a load after concrete failure compared 

to the strength as calculated by Kim’s procedure. 

Nevertheless, even under these specific conditions, Kim’s 

procedure provides a result closer to the ultimate strength in 

the experimental results than the other prediction models. 

In order to evaluate the accuracy of each prediction 

model objectively, 𝑁𝑒𝑥𝑝 𝑁𝑐𝑎𝑙⁄ , RMSE, RMSLE, and R2 

were calculated as a performance index. Table 4 shows a 

performance index comparing the ultimate strength of a 

CFT as obtained from Kim’s procedure, AISC (2016), 

Eurocode 4 (2004), and the formula suggested by Liu et al. 

(2016) with the experimental results. Table 5 shows the 

average of each performance index for all test specimens. 

All performance indexes show that Kim’s procedure has the 

smallest differences from the experimental results compared  

Table 3 Continued  

Ref. 
D 

(mm) 

t 

(mm) 
D/t 

𝑓𝑦 

(MPa) 

𝑓𝑐𝑘 

(MPa) 

𝑁𝑒𝑥𝑝 

(kN) 

Kims’ 
AISC 

(2016) 

EC4 

(2004) 

Liu et al. 

(2016) 

𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 
𝑁𝑒𝑥𝑝

/𝑁𝑐𝑎𝑙 

Sakino and  

Hayashi (2004b) 

CC6C41 239 4.5 53 507 40.5 3583 1.04 1.04 0.73 0.75 

CC6C8 239 4.5 53 507 77 5578 1.09 1.11 0.85 0.87 

CC8A2 108 6.5 17 853 25.4 2275 1.15 1.08 1.02 0.64 

CC8A42 108 6.5 17 853 40.5 2402 1.14 1.07 0.98 0.65 

CC8A8 108 6.5 17 853 77 2713 1.09 1.05 0.95 0.68 

CC8C2 222 6.5 34 843 25.4 4964 1.00 1.03 0.69 0.65 

CC8C41 222 6.5 34 843 40.5 5638 1.00 1.05 0.71 0.69 

CC8C42 222 6.5 34 843 40.5 5714 1.02 1.06 0.72 0.70 

CC8C8 222 6.5 34 843 77 7304 1.05 1.09 0.78 0.76 

CC8D2 324 6.5 50 823 25.4 10045 1.25 1.34 0.82 0.87 

CC8D41 324 6.5 50 823 41.1 11044 1.11 1.26 0.81 0.86 

CC8D42 324 6.5 50 823 41.1 11044 1.17 1.26 0.81 0.86 

CC8D8 324 6.5 50 823 85.1 13849 1.05 1.14 0.80 0.84 

Li et al. (2005) 

sc-1 156.4 3.8 41 342 30.5 1650 1.30 1.37 1.01 0.98 

sc-2 156.4 3.8 41 342 30.5 1710 1.34 1.42 1.05 1.01 

sc-3 156.4 3.8 41 342 30.5 1600 1.26 1.33 0.98 0.95 

sc-4 149.4 4.8 31 366 30.5 1600 1.15 1.19 0.87 0.81 

sc-5 149.4 4.8 31 366 30.5 1700 1.18 1.26 0.93 0.86 

sc-6 149.4 4.8 31 366 30.5 1600 1.13 1.19 0.87 0.81 

sc-7 148.6 5.2 29 379 30.5 1800 1.21 1.25 0.92 0.85 

sc-8 148.6 5.2 29 379 30.5 1850 1.23 1.28 0.95 0.87 

sc-9 148.6 5.2 29 379 30.5 1700 1.13 1.18 0.87 0.80 

sc-10 146.4 6.3 23 360 30.5 2000 1.23 1.28 0.95 0.86 

sc-11 146.4 6.3 23 360 30.5 1950 1.20 1.25 0.93 0.84 

sc-12 146.4 6.3 23 360 30.5 2100 1.29 1.35 1.00 0.90 

Average 1.09 1.16 0.88 0.84 

Standard deviation 0.08 0.10 0.11 0.09 

470



 

Ultimate compressive strength predictions of CFT considering the nonlinear Poisson effect   

 

 

to the other models. According to the performance index of 

𝑁𝑒𝑥𝑝 𝑁𝑐𝑎𝑙⁄ , Kim’s procedure and AISC (2016) tend to 

underestimate the ultimate strength of CFT, and EC4 (2004) 

and the method by Liu et al. (2016) tend to overestimate 

this measure. AISC (2016) greatly underestimates the 

ultimate strength because it cannot sufficiently consider the 

confinement effect on the concrete. Although Eurocode 4 

(2004) considers the confinement effect on the concrete 

using the strength factor, the ultimate strength of the 

composite section is overestimated because this method 

assumes that the steel tube behaves in an elastic region until 

the maximum compressive strain of the concrete. 

Regarding the RMSE and RMSLE results, which can 

directly compare the absolute deviation of the prediction 

results, Kim’s procedure shows the best results among the 

prediction models. Kims' procedure is possible to accurately  

 

 

calculate the ultimate strength of CFT because it considers 

the confinement effect and the non-linear Poisson’s ratio of 

the concrete appropriately. In addition, the high reliability 

of proposed process compared to other prediction models 

suggests that the above factors should be considered in 

detail for each load level.. 

 

 

6. Conclusions 
 

In this study, in order to predict the composite structural 

behavior of a circular CFT under multiaxial stress 

accurately, a procedure that estimates the ultimate 

compressive strength of a CFT considering the confinement 

effect and the nonlinear Poisson’s ratio of concrete is 

proposed. The failure stress of a biaxial interaction diagram  

   
(a) 18.1 MPa ≤  𝑓𝑐𝑘 < 30 MPa (b) 30 MPa ≤  𝑓𝑐𝑘 < 50 MPa (c) 50 MPa ≤  𝑓𝑐𝑘 < 107 MPa 

   
(d) 249 MPa ≤  𝑓𝑦 < 335 MPa (e) 335 MPa ≤  𝑓𝑦 < 525 MPa (f) 525 MPa ≤  𝑓𝑦 < 853 MPa 

   
(g) 16.6 ≤  𝐷/𝑡 < 30 (h) 30 ≤  𝐷/𝑡 < 50 (i) 50 ≤  𝐷/𝑡 < 75 

Fig. 9 Distribution of the experimental data and calculated results 
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Table 5 Performance index average 

Performance 

index 

Average 

Kims’ 
AISC  

(2016) 

EC4  

(2004) 

Liu 

et al.  

(2016) 

𝑁𝑒𝑥𝑝/𝑁𝑐𝑎𝑙 1.09 1.16 0.88 0.84 

RMSE 365 528 1061 987 

RMSLE 0.05 0.07 0.08 0.09 

𝑅2 0.989 0.983 0.989 0.984 

 

 

of concrete and the von-Mises failure yield criterion were 

used to consider multi-dimensional stresses acting on the 

concrete and the steel tube, respectively. The proposed 

procedure, referred to as Kim’s procedure, and the 

corresponding steps are as follows. The procedure initially 

computed the axial strain (𝜀𝑧) of concrete when 𝑣𝑐 = 𝑣𝑠, 

with the strain slightly increased. The Poisson’s ratio, 

confining the stress on the concrete and the stresses of the 

steel tube, is calculated at the given strain. Then, the 

combined stress of the steel tube is calculated by the von-

Mises stress formula to check if the steel tube reaches the 

yield criterion. Once the combined stress of the steel tube is 

determined, the confining stress on the concrete is 

determined and the maximum confined strength and strain 

of the concrete is calculated by Mander’s formula. The 

combined stress of the concrete is then calculated to check 

if the concrete reaches the failure criterion. If the combined 

stress of concrete reaches the failure criterion or the 

combined stress of the steel tube reaches the yield criterion, 

the compressive strength of the CFT is computed based on 

the superposition of the axial strengths of the concrete and 

steel tube. When the calculated compressive strength of the 

CFT (𝑁𝑖) is less than or equal to 𝑁𝑖−1, the loop is stopped  

 

 

and 𝑁𝑖 is determined as the ultimate compressive strength 

of the CFT. To evaluate the results of Kim’s procedure, 

various experimental results and the prediction models by 

AISC (2016) and Eurocode 4 (2004) are compared. 

Performance indexes are used to evaluate the accuracy of 

the prediction models. The ultimate strength of the CFT by 

Kim’s procedure is underestimated by about 9% on average 

compared to the experimental results. The RMSE and 

RMSLE outcomes according to Kim’s procedure are 365 

and 0.05, respectively. These evaluation values show that 

Kim’s procedure has higher accuracy and greater reliability 

than the other prediction models tested here. However, 

when the strength of confined concrete is significantly 

lower than that of the steel tube, the differences between 

Kim’s procedure and the experimental results increase to 

nearly approximately 20%. An improved model considering 

the difference in the strength between the steel tube and 

concrete should be addressed in an upcoming study. 
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